
 

10 Digital Fundamentals

 

is irrelevant: . It may appear tempting to create a product term consisting of the three boxes on
the bottom edge of the K-map. This is not valid because it does not result in all boxes sharing a com-
mon product relationship, and therefore violates the power-of-two rule mentioned previously. Upon
completing the K-map, all product terms are summed to yield a final and simplified Boolean equa-
tion that relates the input variables and the output: .

Functions of four variables are just as easy to solve using a K-map. Beyond four variables, it is
preferable to break complex functions into smaller subfunctions and then combine the Boolean
equations once they have been determined. Figure 1.6 shows an example of a completed Karnaugh
map for a hypothetical function of four variables. Note the overlap between several groups to
achieve a simplified set of product terms. The lager a group is, the fewer unique terms will be re-
quired to represent its logic. There is nothing to lose and something to gain by forming a larger
group whenever possible. This K-map has four product terms that are summed for a final result:

.
In both preceding examples, each result box in the truth table and Karnaugh map had a clearly de-

fined state. Some logical relationships, however, do not require that every possible result necessarily
be a one or a zero. For example, out of 16 possible results from the combination of four variables,
only 14 results may be mandated by the application. This may sound odd, but one explanation could
be that the particular application simply cannot provide the full 16 combinations of inputs. The spe-
cific reasons for this are as numerous as the many different applications that exist. In such circum-
stances these so-called 

 

don’t care

 

 results can be used to reduce the complexity of your logic.
Because the application does not care what result is generated for these few combinations, you can
arbitrarily set the results to 0s or 1s so that the logic is minimized. Figure 1.7 is an example that
modifies the Karnaugh map in Fig. 1.6 such that two don’t care boxes are present. Don’t care values
are most commonly represented with “x” characters. The presence of one x enables simplification of
the resulting logic by converting it to a 1 and grouping it with an adjacent 1. The other x is set to 0 so
that it does not waste additional logic terms. The new Boolean equation is simplified by removing B
from the last term, yielding . It is helpful to remember that x val-
ues can generally work to your benefit, because their presence imposes fewer requirements on the
logic that you must create to get the job done.

 

1.4 BINARY AND HEXADECIMAL NUMBERING

 

The fact that there are only two valid Boolean values, 1 and 0, makes the 

 

binary

 

 numbering system
appropriate for logical expression and, therefore, for digital systems. Binary is a base-2 system in
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FIGURE 1.5 Completed Karnaugh map for a
function of three variables.
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FIGURE 1.6 Completed Karnaugh map for
function of four variables.
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which only the digits 1 and 0 exist. Binary follows the same laws of mathematics as decimal, or
base-10, numbering. In decimal, the number 191 is understood to mean one hundreds plus nine tens
plus one ones. It has this meaning, because each digit represents a successively higher power of ten
as it moves farther left of the decimal point. Representing 191 in mathematical terms to illustrate
these increasing powers of ten can be done as follows:

191 = 1 

 

×

 

 10

 

2

 

 + 9 

 

×

 

 10

 

1

 

 + 1 

 

×

 

 10

 

0

 

Binary follows the same rule, but instead of powers of ten, it works on powers of two. The num-
ber 110 in binary (written as 110

 

2

 

 to explicitly denote base 2) does not equal 110

 

10

 

 (decimal).
Rather, 110

 

2

 

 = 1 

 

×

 

 2

 

2

 

 + 1 

 

×

 

 2

 

1

 

 + 0 

 

×

 

 2

 

0

 

 = 6

 

10

 

. The number 191

 

10

 

 can be converted to binary by per-
forming successive division by decreasing powers of 2 as shown below:

191 ÷ 2

 

7

 

 = 191 ÷ 128 = 1 remainder 63

63 ÷ 2

 

6

 

 = 63 ÷ 64 = 0 remainder 63

63 ÷ 2

 

5

 

 = 63 ÷ 32 = 1 remainder 31

31 ÷ 2

 

4

 

 = 31 ÷ 16 = 1 remainder 15

15 ÷ 2

 

3

 

 = 15 ÷ 8 = 1 remainder 7

7 ÷ 2

 

2

 

 = 7 ÷ 4 = 1 remainder 3

3 ÷ 2

 

1

 

 = 3 ÷ 2 = 1 remainder 1

1 ÷ 2

 

0

 

 = 1 ÷ 1 = 1 remainder 0

The final result is that 191

 

10

 

 = 10111111

 

2

 

. Each binary digit is referred to as a 

 

bit

 

. A group of N
bits can represent decimal numbers from 0 to 2

 

N

 

 – 1. There are eight bits in a 

 

byte

 

, more formally
called an 

 

octet

 

 in certain circles, enabling a byte to represent numbers up to 2

 

8

 

 – 1 = 255. The pre-
ceding example shows the eight power-of-two terms in a byte. If each term, or bit, has its maximum
value of 1, the result is 128 + 64 + 32 + 16 + 8 + 4 + 2 + 1 = 255.

While binary notation directly represents digital logic states, it is rather cumbersome to work
with, because one quickly ends up with long strings of ones and zeroes. 

 

Hexadecimal

 

, or base 16
(

 

hex

 

 for short), is a convenient means of representing binary numbers in a more succinct notation.
Hex matches up very well with binary, because one hex digit represents four binary digits, given that
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FIGURE 1.7 Karnaugh map for function of four vari-
ables with two “don’t care” values.
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